Evaluation of GARCH model Adequacy in forecasting Non-linear economic time series data

نویسندگان

  • M. O. Akintunde
  • D. K. Shangodoyin
چکیده

To date in literature, GARCH model has been described not suitable for non-linear foreign exchange series and therefore this paper proposes an Augmented GARCH model that could capture both linear and non-linear behavior of data. The properties of this new model is derived and found to have a minimum variance compared with GARCH model. We employ the use of Brock-DechertScheinkman (BDS) test statistic to confirm the suitability of GARCH model on the data; the new methodology proposed is illustrated with foreign exchange rate data from Great Britain (Pound) and Botswana (Pula) against United States of America (Dollar). 1 Department of Statistics, University of Botswana, Botswana, Gaborone. 2 Department of Statistics, University of Botswana, Botswana, Gaborone. 3 Department of Statistics, University of Botswana, Botswana, Gaborone. * Corresponding author. Article Info: Received : December 4, 2012. Revised : January 19, 2013 Published online : June 20, 2013 2 Evaluation of GARCH model Adequacy in forecasting ...

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran

This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...

متن کامل

The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility

I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Determination of the best time series model for forecasting annual rainfall of selected stations of Western Azerbaijan province

Rainfall is one of the most important components of the water cycle and plays a very important role in the measurement of climate characteristic in any area. Limitations such as lack of sufficient information about the amount of rainfall in time and space scale and complexity of the relationship between meteorological elements related to rainfall, causes the calculation of these parameters usin...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013